Stereospecific PARP trapping by BMN 673 and comparison with olaparib and rucaparib.
نویسندگان
چکیده
Anti-PARP drugs were initially developed as catalytic inhibitors to block the repair of DNA single-strand breaks. We recently reported that several PARP inhibitors have an additional cytotoxic mechanism by trapping PARP-DNA complexes, and that both olaparib and niraparib act as PARP poisons at pharmacologic concentrations. Therefore, we have proposed that PARP inhibitors should be evaluated based both on catalytic PARP inhibition and PARP-DNA trapping. Here, we evaluated the novel PARP inhibitor, BMN 673, and compared its effects on PARP1 and PARP2 with two other clinical PARP inhibitors, olaparib and rucaparib, using biochemical and cellular assays in genetically modified chicken DT40 and human cancer cell lines. Although BMN 673, olaparib, and rucaparib are comparable at inhibiting PARP catalytic activity, BMN 673 is ∼100-fold more potent at trapping PARP-DNA complexes and more cytotoxic as single agent than olaparib, whereas olaparib and rucaparib show similar potencies in trapping PARP-DNA complexes. The high level of resistance of PARP1/2 knockout cells to BMN 673 demonstrates the selectivity of BMN 673 for PARP1/2. Moreover, we show that BMN 673 acts by stereospecific binding to PARP1 as its enantiomer, LT674, is several orders of magnitude less efficient. BMN 673 is also approximately 100-fold more cytotoxic than olaparib and rucaparib in combination with the DNA alkylating agents methyl methane sulfonate (MMS) and temozolomide. Our study demonstrates that BMN 673 is the most potent clinical PARP inhibitor tested to date with the highest efficiency at trapping PARP-DNA complexes.
منابع مشابه
Cancer Therapy: Preclinical BMN673, a Novel andHighly Potent PARP1/2 Inhibitor for the Treatment of Human Cancers with DNA Repair Deficiency
Purpose: PARP1/2 inhibitors are a class of anticancer agents that target tumor-specific defects in DNA repair. Here, we describe BMN 673, a novel, highly potent PARP1/2 inhibitor with favorable metabolic stability, oral bioavailability, and pharmacokinetic properties. Experimental Design: Potency and selectivity of BMN 673 was determined by biochemical assays. Anticancer activity either as a si...
متن کاملIn vitro analysis of PARP inhibitor nanoformulations
PARP-l is a DNA repair protein that plays a role in a number of repair pathways and also helps in transcriptional regulation; thus PARP inhibitors (PARPi), such as olaparib and BMN-673, act by inhibiting DNA damage repair. This leads to an accumulation of deleterious mutations leading to genetic instability as a result of a number of cell replications. Currently, olaparib is only available in a...
متن کاملTrapping Poly(ADP-Ribose) Polymerase.
Recent findings indicate that a major mechanism by which poly(ADP-ribose) polymerase (PARP) inhibitors kill cancer cells is by trapping PARP1 and PARP2 to the sites of DNA damage. The PARP enzyme-inhibitor complex "locks" onto damaged DNA and prevents DNA repair, replication, and transcription, leading to cell death. Several clinical-stage PARP inhibitors, including veliparib, rucaparib, olapar...
متن کاملMechanistic Dissection of PARP1 Trapping and the Impact on In Vivo Tolerability and Efficacy of PARP Inhibitors.
UNLABELLED Poly(ADP-ribose) polymerases (PARP1, -2, and -3) play important roles in DNA damage repair. As such, a number of PARP inhibitors are undergoing clinical development as anticancer therapies, particularly in tumors with DNA repair deficits and in combination with DNA-damaging agents. Preclinical evidence indicates that PARP inhibitors potentiate the cytotoxicity of DNA alkylating agent...
متن کاملPARP Inhibitors for Cancer Therapy
Rucaparib is an inhibitor of nuclear poly (ADP-ribose) polymerases (inhibition of PARP-1 > PARP-2 > PARP-3), following a similar drug, Olaparib. It disrupts DNA repair and replication pathways (and possibly transcription), leading to selective killing of cancer cells with BRCA1/2 mutations. Rucaparib is approved for recurrent ovarian cancers with germline or somatic mutations in BRCA1/2.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular cancer therapeutics
دوره 13 2 شماره
صفحات -
تاریخ انتشار 2014